翻訳と辞書
Words near each other
・ Partial cyclic order
・ Partial defence
・ Partial derivative
・ Partial differential algebraic equation
・ Partial differential equation
・ Partial discharge
・ Partial dislocations
・ Partial dominance hypothesis theory
・ Partial element equivalent circuit
・ Partial equilibrium
・ Partial equivalence relation
・ Partial evaluation
・ Partial fraction decomposition
・ Partial fractions in complex analysis
・ Partial function
Partial geometry
・ Partial group algebra
・ Partial groupoid
・ Partial hospitalization
・ Partial ileal bypass surgery
・ Partial impact theory
・ Partial index
・ Partial integration
・ Partial integration (contract law)
・ Partial isometry
・ Partial k-tree
・ Partial least squares path modeling
・ Partial least squares regression
・ Partial leverage
・ Partial likelihood methods for panel data


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Partial geometry : ウィキペディア英語版
Partial geometry
An incidence structure C=(P,L,I) consists of points P, lines L, and flags I \subseteq P \times L where a point p is said to be incident with a line l if (p,l) \in I. It is a (finite) partial geometry if there are integers s,t,\alpha\geq 1 such that:
* For any pair of distinct points p and q, there is at most one line incident with both of them.
* Each line is incident with s+1 points.
* Each point is incident with t+1 lines.
* If a point p and a line l are not incident, there are exactly \alpha pairs (q,m)\in I, such that p is incident with m and q is incident with l.
A partial geometry with these parameters is denoted by pg(s,t,\alpha).
==Properties==

* The number of points is given by \frac and the number of lines by \frac.
* The point graph of a pg(s,t,\alpha) is a strongly regular graph : srg((s+1)\frac,s(t+1),s-1+t(\alpha-1),\alpha(t+1)).
* Partial geometries are dual structures : the dual of a pg(s,t,\alpha) is simply a pg(t,s,\alpha).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Partial geometry」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.